Ma

KEY STAGE

TIER

4-6

Paper 2
 Calculator allowed

First name
Last name

School

Remember

- The test is 1 hour long.
- You may use a calculator for any question in this test.
- You will need: pen, pencil, rubber, ruler, tracing paper (optional) and a calculator.
- Some formulae you might need are on page 2.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper - do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

Instructions

Answers

This means write down your answer or show your working and write down your answer.

Calculators

You may use a calculator to answer any question in this test.

Formulae

You might need to use these formulae

Trapezium

Area $=\frac{1}{2}(a+b) h$

Prism

area of cross-section

Volume $=$ area of cross-section \times length

1. Here is a question from a survey. In a time machine, would you like to go forwards or backwards in time?

People said 'Forwards', ‘Backwards’ or 'Don’t know'.

Results:

Forwards	46\%
Backwards	48\%
Don't know	?

The bar for 'Don't know' has not been drawn.
What percentage of people said 'Don't know'?
2. A pupil has these four number cards.

She is going to mix them up and take one card at random.

Match each statement to the correct position on the probability scale.
One is done for you.

3. Some people use this rule to work out how many hours' sleep each night young children need.

Subtract the child's age in years from 30, then divide the result by 2
(a) Sanjay is $\mathbf{8}$ years old.

Use the rule to work out how many hours' sleep he needs.

hours
(b) Lisa is $\mathbf{6}$ years old.

She wakes up every morning at 7 am.
Use the rule to work out what time she needs to go to sleep.
4. Look at the shaded shapes drawn on an isometric grid.

Write each of B, C and D in its correct place in the table below.

	No equal sides	Exactly 2 equal sides	More than 2 equal sides
Has 3 sides	A		
Has more than 3 sides			

5. Some people in a supermarket are shopping for food.
(a) 100 g of cheese costs 46 p .

Peter buys $\mathbf{2 5 0} \mathrm{g}$ of the cheese.
How much does he pay?

1 mark
(b) Tins of beans cost $36 p$ each.

What is the largest number of these tins John can buy with £2?

『
6. The arrow on this dial shows a speed of $\mathbf{2 0} \mathbf{m p h}$.

(a) Draw an arrow on the dial below to show a speed of 65 mph .

(b) $160 \mathrm{~km} / \mathrm{h}$ is about the same as 100 mph .

What speed in $\mathbf{k m} / \mathbf{h}$ is about the same as $\mathbf{2 5 m p h}$?

7. Sam asked pupils in his class:

Do you like American football?

There were 30 pupils in his class.

The same number of pupils said 'Yes' as said 'No'.
12 pupils said 'Don't know'.

Complete the key and the rows for Yes and No in Sam's pictogram.

8. A jug measures in litres and in millilitres.

You can use the diagram to help you write the missing values below.
The first one is done for you.

$$
\frac{1}{2} \text { litre }=500 \mathrm{ml}
$$

》 $\frac{3}{4}$ litre $=\square \mathrm{ml}$

1 mark

1 mark

1 mark
9. Look at the shaded shapes drawn on a square grid.

(a) Nick says:

The area of rectangle A is double the area of square B.

Is he correct?

Explain your answer.
V
\square

10. Look at the diagram of Megan's cube.

Megan puts her finger on point A.
She can move her finger along $\mathbf{3}$ edges to get from point \mathbf{A} to point \mathbf{H} without taking it off the cube.

Complete the table below to show all 6 ways she can do this.
One way is done for you.

11. (a) A straight piece of model car track is 20 cm in length.

How many of these straight pieces are needed to make a 1 metre track?

1 mark
(b) A curved piece of track looks like this:

How many of these curved pieces are needed to make a complete circle of track?

12. Match each statement to the correct expression.

The first one is done for you.

Multiply a by itself

13. Look at the shapes drawn on the centimetre square grid.

For each one, work out the area that is shaded.
The first one is done for you.

$$
\text { Area }=\ldots \mathrm{cm}^{2} \quad \text { Area }=\ldots \mathrm{cm}^{2} \quad \text { Area }=\ldots \mathrm{cm}^{2}
$$

1 mark
14. (a) Look at the equation.

$$
n+3=12
$$

Use it to work out the value of $n-3$
(b) Now look at this equation.

$$
n+3=7
$$

Use it to work out the value of $n-6$
15. (a) Shade two more squares on the shape below so that it has rotation symmetry of order 4

1 mark
(b) Now shade four more squares on the shape below so that it has rotation symmetry of order 2

1 mark
16. A famous mathematician claimed that:

Every even number greater than 4 can be written as the sum of a pair of prime numbers.

For example: 8 can be written as the sum of 3 and 5 , and 3 and 5 are both prime numbers.
(a) Write a pair of prime numbers that sum to 16

Now write a different pair of prime numbers that sum to 16

(b) Now choose an even number that is greater than 16,
then write a pair of prime numbers that sum to your even number.

Complete the sentence below.

The even number \qquad can be written as
the sum of the prime numbers \qquad and \qquad
17. Kim works in a shop.

The shaded squares on the diagram below show the hours she worked in one week.

Monday											
Tuesday											
Wednesday											
Thursday											
Friday											
Saturday											

The table shows her pay for each hour worked.

	Pay for each hour worked
Monday to Friday, 9am to 5 pm	$£ 6.35$
Monday to Friday, after 5 pm	$£ 7.50$
Saturday	$£ 7.50$

How much was Kim's pay for this week?
\mathbb{V}

£

2 marks
18. Here is some information about three people.

- Jo is 2 years older than Harry.
- Kate is twice as old as Jo.

Write an expression for each person's age using n
The first one is given.

Harry's age \qquad

Jo's age \qquad

Kate's age
19. The diagrams show an equilateral triangle and a square.

The shapes are not drawn accurately.

The side length of the equilateral triangle is 8.4 cm .
The perimeter of the square is the same as the perimeter of the equilateral triangle.

Work out the side length of the square.
20. (a) Look at the equation.

$$
5 x+1=2 x-8
$$

Complete the sentence below by ticking (\checkmark) the correct box.

The value of x is ...

(b) Now look at this equation.

$$
y=3 x-2
$$

Complete the sentence below by ticking (\checkmark) the correct box.

$$
\text { The value of } x \text { is ... }
$$

21. Gita threw three darts.

Use the information in the box to work out what numbers she threw.

The lowest number was 10
The range was 10
The mean was 15

Gita's numbers were \qquad , \qquad and \qquad
22. A cookery book shows this conversion table.

Mass in ounces	Mass in grams
1	25
2	50
3	75
4	110
5	150
10	275

Use the table to explain how you can tell the conversions cannot all be exact.
23. Concorde could travel 1 mile every 3 seconds.

How many miles per hour (mph) is that?

\qquad mph
24. In a bag, there are only red, white and yellow counters.

I am going to take a counter out of the bag at random.

The probability that it will be red is more than $\frac{1}{4}$
It is twice as likely to be white as red.

Give an example of how many counters of each colour there could be.
Write numbers in the sentence below.

There could be \qquad red, \qquad white and \qquad yellow counters.
25. (a) The perimeter of a regular hexagon is $42 a+18$

Write an expression for the length of one of its sides.

\qquad
(b) The perimeter of a different regular polygon is $\mathbf{7 5 b} \mathbf{- 2 0}$

The length of one of its sides is $\mathbf{1 5 b - 4}$

How many sides does this regular polygon have?

(c) The perimeter of a square is $\mathbf{4 (c - 9)}$

Find the perimeter of the square when $c=15$
© \qquad
26. A dessert has both fruit and yoghurt inside.

Altogether, the mass of the fruit and yoghurt is $\mathbf{1 7 5} \mathbf{g}$.
The ratio of the mass of fruit to the mass of yoghurt is $\mathbf{2 : 5}$

What is the mass of the yoghurt?
\qquad
27. The diagram shows a plan of Luke's new lawn.

The lawn is a circle with radius 3 m .

Work out the area of the lawn.

\qquad m^{2}
28. To find the nth triangular number, you can use this rule.

$$
n \text {th triangular number }=\frac{n}{2}(n+1)
$$

Example: 3 rd triangular number $=\frac{3}{2}(3+1)$
$=6$
(a) Work out the 10th triangular number.
(b) Now work out the 100th triangular number.
\qquad
29. Look at triangle ABC.
$A B D$ is an isosceles triangle where $A B=A D$.

Work out the sizes of angles x, y and z
Give reasons for your answers.
\qquad
$x=$ because \qquad
\qquad $y=-1$
$y=$ \qquad because \qquad
\qquad
$z=$ \qquad because \qquad
\qquad
30. The graphs show information about the different journeys of four people.

Write the correct names next to the journey descriptions in the table below.

Name	Journey description
	This person walked slowly and then ran at a constant speed.
	This person walked at a constant speed but turned back for a while before continuing.
	This person walked at a constant speed without stopping or turning back.
	This person walked at a constant speed but stopped for a while in the middle.

1 mark
END OF TEST
\square

